Introduction to ANOVA

- Up to now, we have used the mean to test the null hypothesis.
- We can use variance of the data for hypothesis testing
ANOVA

- F-test after Fisher
- Calculate F-obtained
- Compare to F-critical

Sampling distribution of F

- Gives all possible F values along with the p (F) for each value, assuming sampling is random from the population.

Sampling distribution of F

- Generated empirically by:
 - all possible samples of size n_1 and n_2
 - Estimating the population variance
 - Calculate F_{obt} for all possible combinations of s_1^2 and s_2^2
 - Calculate p (F) for each different value of F_{obt}
ANOVA

- Use an ANOVA when you are comparing 2 groups or more.
- Use a one-way ANOVA when you have one independent variable with two or more levels.

ANOVA vs. Independent t-test

- T tests use means to examine differences
- ANOVA is an analysis of VARIANCE
- F can never be negative because all values are squared.
 - t can be positive or negative
 - F distribution is "folded" over t distribution
- \(t^2 = F \)
ANOVA vs. Independent t-test

- So, if you have one IV with 2 levels you can use:
 - Independent sample t test
 - Or ANOVA
- But if IV has more than 2 levels
 - Use ANOVA

Question

If you conduct an analysis of variance and find a negative F, it means that:
A) it is probably significantly different from 1
B) it is probably a Type I error
C) it is probably a Type II error
D) you have made a mistake in your calculations

Answer

If you conduct an analysis of variance and find a negative F, it means that:
A) it is probably significantly different from 1
B) it is probably a Type I error
C) it is probably a Type II error
D) you have made a mistake in your calculations
How ANOVA works

- An ANOVA tests the ratio of between-group variability to within-group variability

Sources of variability

<table>
<thead>
<tr>
<th>Between-Group Variance</th>
<th>Within-Group Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differences Between Group Means</td>
<td>Differences Between People's Scores Within each Group</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>Random Error</td>
</tr>
<tr>
<td>What we Can Explain</td>
<td>What we Can't Explain</td>
</tr>
</tbody>
</table>

The F-statistic

\[
F = \frac{\text{variability between groups}}{\text{variability within groups}}
\]

Or, in other words:

\[
F = \frac{\text{variance we can explain}}{\text{variance we can't explain}}
\]
Hypotheses for F-test

- The F-statistic is based on a one-tailed distribution.
 - Therefore, F-tests (ANOVAs) are always one-tailed
 - $H_0 = M_1 = M_2$
 - $H_1 = M_1 \neq M_2$

F table

- We use the F-table to find our critical value.
- Similar to t-tests, but now we have to look up two different degrees of freedom to find our critical value
- Found in back of book

Finding F critical

- Find $df_{between}$ and df_{within}
 - $df_{between}$ is the df in the denominator
 - df_{within} is the df in the numerator
 - Gives alpha .01 in first row
 - Alpha = .05 second row
Finding F critical

<table>
<thead>
<tr>
<th>df</th>
<th>df for your treatment effect</th>
<th>df for your error term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total df</td>
<td>a - 1</td>
<td>a(n - 1)</td>
</tr>
<tr>
<td>(an - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n = total # of participants in each group
a = the number of groups

df between + df within = df total

Example
Therapy Experiment

A researcher wants to know what type of therapy helps people with a Simple Phobia the most. She assigns 15 people to 1 of 3 groups so that there are 5 people in each group: a psychoanalysis group, a cognitive therapy group, and a behavioral therapy group. After therapy, she has each person rate the severity of their phobia from 0 (it’s gone) to 10 (it’s the worst it has ever been).

<table>
<thead>
<tr>
<th>Psychoanalysis</th>
<th>Cognitive Therapy</th>
<th>Behavioral Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

X = 5 X = 4.4 X = 0.88
Example

Therapy Experiment

- Type of therapy is one IV with 3 levels:
 - psychoanalysis, cognitive therapy, and behavioral therapy
- Hypothesis
 - $H_0 = M_1 = M_2 = M_3$
 - $H_1 = M_1 \neq M_2 \neq M_3$

Performing an ANOVA

1. Find df
2. Calculate F_{obs}
3. Look up F_{crit}
4. Compare F_{obs} to F_{crit} to see if you have a significant effect

Calculating F observed

- Remember that:
 - $F = \frac{\text{variability between groups}}{\text{variability within groups}}$
- So, to find F, we must calculate:
 - the between-group variability
 - the within-group variability
ANOVA summary table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculating F observed

• In ANOVA, variance or variability is called the Mean Square (or MS for short)

• So $F = \frac{MS_{\text{between}}}{MS_{\text{within}}}$

Calculating F observed

• $MS = \frac{SS}{df}$
 - SS is the Sum of Squares

• There are three SSs:
 - SS_{total}
 - SS_{between} = (also called SS$_A$ or SS$_{\text{effect}}$)
 - SS_{within} = (also called SS$_{\text{error}}$ or SS$_{\text{error}}$)
Getting our sum of squares

- Remember
- \(\Sigma(x - \bar{x})^2 \) = sum of squares
 - \(\frac{SS}{n} - 1 \) = variance
 - \(\sqrt{\text{variance}} \) = standard deviation

Calculating F obtained

- So, once we have our SS, we can divide by our degrees of freedom to get our MS between and MS error.
- Then we divide \(\frac{MS_{\text{between}}}{MS_{\text{error}}} \) to get our F-obtained.

Calculating ANOVA using the computational method
Comparing \(F \) obtained to \(F \) critical

• It's just like a one-tailed \(z \)-test or a one-tailed \(t \)-test!
• If \(F_{\text{obs}} > F_{\text{crit}} \), then you have a significant effect.
• If \(F_{\text{obs}} < F_{\text{crit}} \), then you do not have a significant effect.

Calculating ANOVA using Excel

• Demonstration of ANOVA using Excel

Interpreting a one-way ANOVA

• Type of therapy significantly affects symptoms of Simple Phobia.
 – Or, there is a \textit{main effect} of type of therapy on Simple Phobia.
Reporting the F-statistic

\[F(\text{df between}, \text{df within}) = F_{\text{obs}}, \ p < .05 \]

Assumptions of ANOVA

1. The population from which the samples were taken are normally distributed
2. The samples are drawn from a population of equal variances (homogeneity of variance)

violations of Assumptions of ANOVA

- ANOVA, like t-test, is robust.
- Minimally effected by violations of normality
- Relatively insensitive to violations of homogeneity of variance
Effect size and ANOVA

- Remember that the effect size is a number that tells you how much variance in your dependent variable can be explained by your independent variable.
- How important is the effect?

Formula for effect size:

\[\eta^2 = \frac{SS_{\text{between}}}{SS_{\text{total}}} \]

(\(\eta^2\) is pronounced "eta squared")

Power

- Power increases with larger sample sizes.
- Power varies directly with the size of the real effect.
 - The larger the real effect the larger the values of the \(SS\)
- Smaller variance = more power
- \(P = .05\)