CRM 341 – Key Concepts – Module 2

Key Concepts of Chapter 12:

Three Types of Prints

- Fingerprint evidence is most common form of forensic evidence found at crime scenes
 - However, fingerprint evidence is still underutilized
 - Many scenes are not even examined for fingerprints
- Whenever an object is handled or touched, a copy or reproduction of the friction skin can be left on the object
- Evidence prints are:
 - Chance impressions of friction skin left at the crime scene or on objects of evidence
 - Typically only partial prints are available with varying degrees of distortion and clarity
 - Commonly called latent prints
- Types of evidence prints
 - Latent prints
 - o Hidden or invisible prints left on a touched object
 - Must be developed or made visible by using powders, chemicals, or forensic light source
 - Visible prints
 - Prints that do not need development to be seen
 - Example: prints in blood, grease, dirt, or dust
 - Normally photographed for preservation
 - Plastic or molded impressions
 - Prints that have been impressed into a substance
 - Example: prints pressed into candle, bars of soap, window putty, or paint

Composition of Latent Prints

- Composed of a number of different substances
 - Mostly water from perspiration
 - Mixture of secretions from three major sweat glands
 - Amino acids, fatty acids, proteins, and various other inorganic and organic components
- Handled objects leave a copy of friction skin features due to secretions
- Other contaminates present on fingers, hands, or handled object may reproduce friction skin or print features
- Best technique for developing prints depends on composition of latent print
 - Fingerprint powders adhere to moisture present in latent print. Powder development may be ineffective after moisture or other residues evaporate
 - Chemical ninhydrin reacts with amino acids in latent print (porous surfaces)
- Unfortunately, composition of latent print is usually unknown

Determining the Age of Latent Prints

- Many factors affect how long a latent print may remain on an object
 - Condition of hands
 - Wetness, dryness, greasy, etc.
 - Particular object touched
 - Clean, dirty, smooth, porous
 - Constituents of latent print
 - Atmospheric conditions
 - Heat or dampness
- Prints that develop very strong and rapidly with fingerprint powder do not necessarily mean print is fresh
- Prints left in many different contaminates may develop very strong, days, weeks, or even months after print was placed on object
- No scientific way to examine a latent print and determine age exists due to the numerous unknown variables
- Print can be no older than the object that it was found on
- Assessment of other circumstances make it possible to date a print
 - Muddy handprint found on a window glass after a storm
 - Crime victim stated window was washed day before storm
 - Reasonable to assume print was placed on glass after it was washed

Limitations of Latent Prints

- Limitation 1: Not being able to determine age of a latent print
 - Probative value of latent print evidence on objects accessible to public or suspect
 - Example: "Skid Row Stabber" Latent print of suspect obtained on public bench next to serial murder victim in L.A. used with other evidence
 - Inability to date prints may not be important
 - Example: Print obtained inside home of a burglary victim where suspect has never had legitimate access usually sufficient to prove burglary
- Limitation 2: Not having any evidence prints at all
 - Prints are most often not left behind on objects that are handled due to numerous variables
 - Some jurors expect fingerprint evidence
 - Negative testimony courtroom education of jurors by fingerprint examiners explaining reasons why a person may not leave prints on an object

Latent Print Investigations

- Crime scene search for evidence prints performed with a systematic methodology
 - Victims and witnesses are interviewed to determine what happened
 - How did suspect(s) enter or leave scene?
 - What objects were touched or moved by criminals?
 - Scene is searched
 - Fingerprint investigator must determine best method to develop and preserve latent print evidence on each object examined
 - o Not every surface handled by criminal will be suitable to retain latent prints
 - Most investigations conducted with fingerprint powders

- Fingerprint powders work best on non-porous objects
 - Ideal surfaces are hard, clean, smooth surfaces such as glass, ceramics, and shiny/polished metals
- Objects handled with regularity, such as door knobs, drawer pulls, or business equipment may not yield latent prints
- Objects with texture, dirty, or porous may not retain latent prints

Key Concepts of Chapter 15:

- Fingerprints are ideal for personal identification because they are permanent and unique
- Fingerprints are used for identification in two critical areas of law enforcement
 - Record prints
 - Evidence prints
 - *Record prints* criminal record identification used to establish identity of those arrested, deceased, missing, or as background check for security or employment
 - Print exemplars usually taken of all 10 fingers for searching a records file, either manually by classification or through an automated fingerprint identification system's database
 - *Evidence prints* investigation of crimes through evidence prints found at crime scenes
 - Usually a single chance impression left on an object at crime scene that is normally a partial print with varying degrees of clarity
 - Print may be checked against a known suspect's fingerprint exemplar or if it is suitable for a computer search, it may be run against an AFIS database
- Same concept for comparison applies to record and evidence prints
- Unique features present in prints are compared to establish if two prints were made by same source
 - Particular individual and specific area of friction skin
- Since all areas of friction skin are unique, when an identification is made, it is 100% conclusive
 - Friction skin identification is one of the strongest forms of identification
- Friction skin is individualized through a comparison process of ridge features, their appearance, and their unique arrangements

Ridge Features and Clarity

- Every friction ridge is a unique formation
- Although possible, it may not be practical or necessary to individualize a single ridge of a fingerprint
- Remote chance to find single ridge recorded with the necessary clarity of detail on an object and exemplar
- One of the complexities of the identification process is the various levels of clarity that may be present in the prints that are being compared
- Level of clarity affects type of detail being compared and amount of detail needed to make an identification
 - Impossible to give standardized answer for how much detail is needed to make an identification

- Every comparison is unique as every area of friction skin is unique
- Clarity can be broken down into three levels
 - All three levels may be present in different areas of same impression
 - David Ashbaugh first proposed concept of dividing clarity of detail into three levels
 - 0 1980 Ridgeology, Royal Canadian Mounted Police publication
- 1st Level Detail: Ridge Flow
 - Lowest level of clarity and detail
 - Observations of overall pattern type or ridge flow
 - Only contains class characteristics and cannot be individualized alone
- 2nd Level Detail: The Path of the Individual Ridges
 - Observations along path of individual ridge that reveal location where ridge ends, bifurcates, or continues through pattern area
 - Observations of major ridge features such as locations of dots or islands (ridges wide as they are long) usually containing one pore
 - Allows identifications to be made
- 3rd Level Detail: Ridge Appearance
 - Highest level of clarity and greatest individualizing power
 - Observations of smallest features and areas on individual ridges
 - o Incipient or nascent ridges, and scars
 - Shapes and contours of ridge, pore structure, ridge alignment or misalignment
 - Features can be analyzed, compared, and evaluated

The Identification Process

- Friction skin identification conducted with scientific methodology
- Roy A. Huber in 1959 proposed three-stage individualization process
- Three stages of individualization
 - Analysis

- Comparison
- Evaluation, plus verification
 - Verification repeatability of process by a second qualified examiner
- This identification process has been embraced by the fingerprint identification community
- Method can be used in any area of comparative analysis
- Process commonly referred to by fingerprint examiners as ACE/V
- Analysis
 - Print being compared is examined to determine detail or features present
 Ridge flow, flexion creases, pattern type and grouping of features
 - Quality (clarity) of detail and area of friction skin that made impression is determined
 - Known or exemplar prints are also analyzed similarly
- Comparison
 - Evidence print is compared to known exemplar
 - Prints are placed side by side, orienting evidence print to area in corresponding exemplar
 - Prominent area or grouping of features on evidence print is located and compared with exemplar
- Evaluation
 - Stage to determine if comparison features agree or are dissimilar

- Identification made based on agreement of detail (similarities) or an elimination is made, based on dissimilarity
- Insufficient detail or quality may not allow for identification or elimination
- Verification process is repeated by another qualified fingerprint examiner

Conclusions

- Comparison between prints yields three possible conclusions:
 - **Identification** -2 prints are one and the same
 - Examiner establishes by comparison of features present in 2 impressions that they came from same source, individual, and specific area of friction skin
 - Conclusive examination
 - Elimination 2 prints are not the same
 - Examiner establishes by comparison that features are different and not made by source of comparison exemplar
 - Conclusive examination
 - **Inconclusive** Examiner cannot identify or eliminate print
 - Results when insufficient detail needed for identification or elimination in evidence print and/or exemplar
- Since every area of friction skin is unique and from only one donor, it is not acceptable to give probable identification opinions
- Currently, no scientifically proven way to establish a probable friction skin identification by statistics or other means
- If insufficient detail to determine if two prints are identical and elimination of evidence print is not possible, then the appropriate report findings would be "inconclusive"
- Prints may be eliminated even if there is insufficient detail to make an identification
 - Print may lack individual ridge features needed for identification, but pattern type may be present
 - If examiner observes whorl type pattern in evidence print and all arch type patterns in exemplar then print can be eliminated as not being the same

<u>REFERENCE</u>

Leo, W. (2004). Fingerprint identification. California: Lawtech Custom Publishing.